Machine learning enhances assessment of proficiency in endovascular aortic repair simulations

Rebecca Andrea Conradsen Skov*, Jonathan Lawaetz, Michael Strøm, Isabelle Van Herzeele, Lars Konge, Timothy Andrew Resch, Jonas Peter Eiberg, ENHANCE research collaborators

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Downloads (Pure)
OriginalsprogEngelsk
Artikelnummer101576
TidsskriftCurrent Problems in Surgery
Vol/bind61
Udgave nummer10
Antal sider13
ISSN0011-3840
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
IvH is supported by a Senior Clinical Fellowship (802314N) of the Fund for Scientific Research - Flanders, Belgium. This study was supported by an unrestricted general research grant from Medtronic (A1731784). The funder did not have any role in design of the study, data collection, analysis, interpretation, manuscript preparation or decision to publish the study.

Citationsformater