Mapping (Dis-)Information Flow about the MH17 Plane Crash

Publikation: KonferencebidragPaperForskning

1531 Downloads (Pure)

Abstract

Digital media enables not only fast sharingof information, but also disinformation. Oneprominent case of an event leading to circu-lation of disinformation on social media isthe MH17 plane crash. Studies analysing thespread of information about this event on Twit-ter have focused on small, manually anno-tated datasets, or used proxys for data anno-tation. In this work, we examine to what ex-tent text classifiers can be used to label datafor subsequent content analysis, in particularwe focus on predicting pro-Russian and pro-Ukrainian Twitter content related to the MH17plane crash. Even though we find that a neuralclassifier improves over a hashtag based base-line, labeling pro-Russian and pro-Ukrainiancontent with high precision remains a chal-lenging problem. We provide an error analysisunderlining the difficulty of the task and iden-tify factors that might help improve classifica-tion in future work. Finally, we show how theclassifier can facilitate the annotation task forhuman annotators
OriginalsprogEngelsk
Publikationsdato2019
StatusUdgivet - 2019
BegivenhedNatural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda - The Association for Computational Linguistics (ACL), Hong Kong
Varighed: 4 nov. 2019 → …
Konferencens nummer: EMNLP-IJCNLP 2019
https://www.aclweb.org/anthology/D19-50.pdf#page=55

Konference

KonferenceNatural Language Processing for Internet Freedom
NummerEMNLP-IJCNLP 2019
LokationThe Association for Computational Linguistics (ACL)
Land/OmrådeHong Kong
Periode04/11/2019 → …
Internetadresse

Bibliografisk note

Proceedings of the Workshop

Citationsformater