MIntO: A Modular and Scalable Pipeline For Microbiome Metagenomic and Metatranscriptomic Data Integration

Carmen Saenz, Eleonora Nigro, Vithiagaran Gunalan, Manimozhiyan Arumugam

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    9 Citationer (Scopus)
    39 Downloads (Pure)

    Abstract

    Omics technologies have revolutionized microbiome research allowing the characterization of complex microbial communities in different biomes without requiring their cultivation. As a consequence, there has been a great increase in the generation of omics data from metagenomes and metatranscriptomes. However, pre-processing and analysis of these data have been limited by the availability of computational resources, bioinformatics expertise and standardized computational workflows to obtain consistent results that are comparable across different studies. Here, we introduce MIntO (Microbiome Integrated meta-Omics), a highly versatile pipeline that integrates metagenomic and metatranscriptomic data in a scalable way. The distinctive feature of this pipeline is the computation of gene expression profile through integrating metagenomic and metatranscriptomic data taking into account the community turnover and gene expression variations to disentangle the mechanisms that shape the metatranscriptome across time and between conditions. The modular design of MIntO enables users to run the pipeline using three available modes based on the input data and the experimental design, including de novo assembly leading to metagenome-assembled genomes. The integrated pipeline will be relevant to provide unique biochemical insights into microbial ecology by linking functions to retrieved genomes and to examine gene expression variation. Functional characterization of community members will be crucial to increase our knowledge of the microbiome's contribution to human health and environment. MIntO v1.0.1 is available at https://github.com/arumugamlab/MIntO.

    OriginalsprogEngelsk
    Artikelnummer846922
    TidsskriftFrontiers in Bioinformatics
    Vol/bind2
    Antal sider15
    ISSN2673-7647
    DOI
    StatusUdgivet - 2022

    Bibliografisk note

    Copyright © 2022 Saenz, Nigro, Gunalan and Arumugam.

    Citationsformater