Mod p homology of unordered configuration spaces of points in parallelizable surfac

Matthew Chen, Adela Yiyu Zhang

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

1 Citationer (Scopus)
10 Downloads (Pure)

Abstract

We provide a short proof that the dimensions of the mod p homology groups of the unordered configuration space Bk(T) of k points in a closed torus are the same as its Betti numbers for p > 2 and k ≤ p. Hence the integral homology has no p-power torsion in this range. The same argument works for the once-punctured genus g surface with g ≥ 0, thereby recovering a result of Brantner-Hahn-Knudsen via Lubin-Tate theory.

OriginalsprogEngelsk
TidsskriftProceedings of the American Mathematical Society
Vol/bind152
Udgave nummer5
Sider (fra-til)2239-2248
Antal sider10
ISSN0002-9939
DOI
StatusUdgivet - 2024

Bibliografisk note

Publisher Copyright:
© 2024 American Mathematical Society. All rights reserved.

Citationsformater