Abstract
We provide a short proof that the dimensions of the mod p homology groups of the unordered configuration space Bk(T) of k points in a closed torus are the same as its Betti numbers for p > 2 and k ≤ p. Hence the integral homology has no p-power torsion in this range. The same argument works for the once-punctured genus g surface with g ≥ 0, thereby recovering a result of Brantner-Hahn-Knudsen via Lubin-Tate theory.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Proceedings of the American Mathematical Society |
Vol/bind | 152 |
Udgave nummer | 5 |
Sider (fra-til) | 2239-2248 |
Antal sider | 10 |
ISSN | 0002-9939 |
DOI | |
Status | Udgivet - 2024 |
Bibliografisk note
Publisher Copyright:© 2024 American Mathematical Society. All rights reserved.