Modular graph forms from equivariant iterated Eisenstein integrals

Daniele Dorigoni, Mehregan Doroudiani, Joshua Drewitt, Martijn Hidding, Axel Kleinschmidt, Nils Matthes, Oliver Schlotterer*, Bram Verbeek

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

10 Citationer (Scopus)
9 Downloads (Pure)

Abstract

The low-energy expansion of closed-string scattering amplitudes at genus one introduces infinite families of non-holomorphic modular forms called modular graph forms. Their differential and number-theoretic properties motivated Brown’s alternative construction of non-holomorphic modular forms in the recent mathematics literature from so-called equivariant iterated Eisenstein integrals. In this work, we provide the first validations beyond depth one of Brown’s conjecture that equivariant iterated Eisenstein integrals contain modular graph forms. Apart from a variety of examples at depth two and three, we spell out the systematics of the dictionary and make certain elements of Brown’s construction fully explicit to all orders.

OriginalsprogEngelsk
Artikelnummer162
TidsskriftJournal of High Energy Physics
Vol/bind2022
Udgave nummer12
Antal sider44
ISSN1126-6708
DOI
StatusUdgivet - 2022

Bibliografisk note

Publisher Copyright:
© 2022, The Author(s).

Citationsformater