Abstract
The problem of constructing hazard-free Boolean circuits dates back to the 1940s and is an important problem in circuit design. Our main lower-bound result unconditionally shows the existence of functions whose circuit complexity is polynomially bounded while every hazard-free implementation is provably of exponential size. Previous lower bounds on the hazard-free complexity were only valid for depth 2 circuits. The same proof method yields that every subcubic implementation of Boolean matrix multiplication must have hazards. These results follow from a crucial structural insight: Hazard-free complexity is a natural generalization of monotone complexity to all (not necessarily monotone) Boolean functions. Thus, we can apply known monotone complexity lower bounds to find lower bounds on the hazard-free complexity. We also lift these methods from the monotone setting to prove exponential hazard-free complexity lower bounds for non-monotone functions. As our main upper-bound result, we show how to efficiently convert a Boolean circuit into a bounded-bit hazard-free circuit with only a polynomially large blow-up in the number of gates. Previously, the best known method yielded exponentially large circuits in the worst case, so our algorithm gives an exponential improvement. As a side result, we establish the NP-completeness of several hazard detection problems.
| Originalsprog | Engelsk |
|---|---|
| Artikelnummer | 25 |
| Tidsskrift | Journal of the ACM |
| Vol/bind | 66 |
| Udgave nummer | 4 |
| ISSN | 0004-5411 |
| DOI | |
| Status | Udgivet - aug. 2019 |
| Udgivet eksternt | Ja |