TY - JOUR
T1 - On the declarative paradigm in hybrid business process representations
T2 - A conceptual framework and a systematic literature study
AU - Abbad Andaloussi, Amine
AU - Burattin, Andrea
AU - Slaats, Tijs
AU - Kindler, Ekkart
AU - Weber, Barbara
PY - 2020
Y1 - 2020
N2 - Process modeling plays a central role in the development of today's process-aware information systems both on the management level (e.g., providing input for requirements elicitation and fostering communication) and on the enactment level (providing a blue-print for process execution and enabling simulation). The literature comprises a variety of process modeling approaches proposing different modeling languages (i.e., imperative and declarative languages) and different types of process artifact support (i.e., process models, textual process descriptions, and guided simulations). However, the use of an individual modeling language or a single type of process artifact is usually not enough to provide a clear and concise understanding of the process. To overcome this limitation, a set of so-called “hybrid” approaches combining languages and artifacts have been proposed, but no common grounds have been set to define and categorize them. This work aims at providing a fundamental understanding of these hybrid approaches by defining a unified terminology, providing a conceptual framework and proposing an overarching overview to identify and analyze them. Since no common terminology has been used in the literature, we combined existing concepts and ontologies to define a “Hybrid Business Process Representation” (HBPR). Afterwards, we conducted a Systematic Literature Review (SLR) to identify and investigate the characteristics of HBPRs combining imperative and declarative languages or artifacts. The SLR resulted in 30 articles which were analyzed. The results indicate the presence of two distinct research lines and show common motivations driving the emergence of HBPRs, a limited maturity of existing approaches, and diverse application domains. Moreover, the results are synthesized into a taxonomy classifying different types of representations. Finally, the outcome of the study is used to provide a research agenda delineating the directions for future work.
AB - Process modeling plays a central role in the development of today's process-aware information systems both on the management level (e.g., providing input for requirements elicitation and fostering communication) and on the enactment level (providing a blue-print for process execution and enabling simulation). The literature comprises a variety of process modeling approaches proposing different modeling languages (i.e., imperative and declarative languages) and different types of process artifact support (i.e., process models, textual process descriptions, and guided simulations). However, the use of an individual modeling language or a single type of process artifact is usually not enough to provide a clear and concise understanding of the process. To overcome this limitation, a set of so-called “hybrid” approaches combining languages and artifacts have been proposed, but no common grounds have been set to define and categorize them. This work aims at providing a fundamental understanding of these hybrid approaches by defining a unified terminology, providing a conceptual framework and proposing an overarching overview to identify and analyze them. Since no common terminology has been used in the literature, we combined existing concepts and ontologies to define a “Hybrid Business Process Representation” (HBPR). Afterwards, we conducted a Systematic Literature Review (SLR) to identify and investigate the characteristics of HBPRs combining imperative and declarative languages or artifacts. The SLR resulted in 30 articles which were analyzed. The results indicate the presence of two distinct research lines and show common motivations driving the emergence of HBPRs, a limited maturity of existing approaches, and diverse application domains. Moreover, the results are synthesized into a taxonomy classifying different types of representations. Finally, the outcome of the study is used to provide a research agenda delineating the directions for future work.
KW - Business process modeling
KW - Declarative process modeling
KW - Hybrid process model
KW - Process flexibility
KW - Understandability of process models
UR - http://www.scopus.com/inward/record.url?scp=85079009505&partnerID=8YFLogxK
U2 - 10.1016/j.is.2020.101505
DO - 10.1016/j.is.2020.101505
M3 - Review
AN - SCOPUS:85079009505
VL - 91
JO - Information Systems
JF - Information Systems
SN - 0306-4379
M1 - 101505
ER -