On the equivalence between Lurie's model and the dendroidal model for infinity-operads

Gijs Heuts, Vladimir Hinich, Ieke Moerdijk*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

24 Citationer (Scopus)

Abstract

We compare two approaches to the homotopy theory of ∞-operads. One of them, the theory of dendroidal sets, is based on an extension of the theory of simplicial sets and ∞-categories which replaces simplices by trees. The other is based on a certain homotopy theory of marked simplicial sets over the nerve of Segal's category Γ. In this paper we prove that for operads without constants these two theories are equivalent, in the precise sense of the existence of a zig-zag of Quillen equivalences between the respective model categories.

OriginalsprogEngelsk
TidsskriftAdvances in Mathematics
Vol/bind302
Sider (fra-til)869-1043
Antal sider175
ISSN0001-8708
DOI
StatusUdgivet - 22 okt. 2016
Udgivet eksterntJa

Citationsformater