On the inverse spectral problems for quantum graphs

M. Olivieri*, D. Finco

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftReviewpeer review

Abstract

We review some aspects of inverse spectral problems for quantum graphs. Under hypothesis of rational independence of lengths of edges it is possible, thanks to trace formulas, to reconstruct information on compact and non compact graphs from the knowledge, respectively, of the spectrum of Laplacian and of the scattering phase. In the case of Sturm-Liouville operators defined on compact graphs and in general for differential operators on compact star-graphs, unknown potentials can be recovered from the knowledge of the spectrum of operators obtained imposing different boundary conditions.

OriginalsprogEngelsk
TidsskriftSpringer INdAM Series
Vol/bind18
Sider (fra-til)267-281
Antal sider15
ISSN2281-518X
DOI
StatusUdgivet - 2017
Udgivet eksterntJa

Bibliografisk note

Publisher Copyright:
© Springer International Publishing AG 2017.

Citationsformater