Abstract
An equivariant topological field theory is defined on a cobordism category of manifolds with principal fiber bundles for a fixed (finite) structure group. We provide a geometric construction which for any given morphism of finite groups assigns in a functorial way to a G-equivariant topological field theory an H-equivariant topological field theory, the pushforward theory. When H is the trivial group, this yields an orbifold construction for G-equivariant topological field theories which unifies and generalizes several known algebraic notions of orbifoldization.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Pure and Applied Algebra |
Vol/bind | 223 |
Udgave nummer | 3 |
Sider (fra-til) | 167-1192 |
ISSN | 0022-4049 |
Status | Udgivet - 2019 |
Udgivet eksternt | Ja |