TY - JOUR
T1 - Pharmacokinetic Analysis of 64Cu-ATSM Dynamic PET in Human Xenograft Tumors in Mice
AU - Li, Fan
AU - Jørgensen, Jesper Tranekjær
AU - Madsen, Jacob
AU - Kjaer, Andreas
PY - 2015/3/27
Y1 - 2015/3/27
N2 - The aim of this study was to evaluate the feasibility to perform voxel-wise kinetic modeling on datasets obtained from tumor-bearing mice that underwent dynamic PET scans with 64Cu-ATSM and extract useful physiological parameters.METHODS: Tumor-bearing mice underwent 90-min dynamic PET scans with 64Cu-ATSM and CT scans with contrast. Irreversible and reversible two-tissue compartment models were fitted to time activity curves (TACs) obtained from whole tumor volumes and compared using the Akaike information criterion (AIC). Based on voxel-wise pharmacokinetic analysis, parametric maps of model rate constants k₁, k₃ and Ki were generated and compared to 64Cu-ATSM uptake.RESULTS: Based on the AIC, an irreversible two-tissue compartment model was selected for voxel-wise pharmacokinetic analysis. Of the extracted parameters, k₁ (~perfusion) showed a strong correlation with early tracer uptake (mean spearman R = 0.88) 5 min post injection (pi). Moreover, positive relationships were found between late tracer uptake (90 min pi) and both k₃ and the net influx rate constant, Ki (mean spearman R = 0.56 and R = 0.86; respectively).CONCLUSION: This study shows the feasibility to extract relevant parameters from voxel-wise pharmacokinetic analysis to be used for preclinical validation of 64Cu-ATSM as a hypoxia-specific PET tracer.
AB - The aim of this study was to evaluate the feasibility to perform voxel-wise kinetic modeling on datasets obtained from tumor-bearing mice that underwent dynamic PET scans with 64Cu-ATSM and extract useful physiological parameters.METHODS: Tumor-bearing mice underwent 90-min dynamic PET scans with 64Cu-ATSM and CT scans with contrast. Irreversible and reversible two-tissue compartment models were fitted to time activity curves (TACs) obtained from whole tumor volumes and compared using the Akaike information criterion (AIC). Based on voxel-wise pharmacokinetic analysis, parametric maps of model rate constants k₁, k₃ and Ki were generated and compared to 64Cu-ATSM uptake.RESULTS: Based on the AIC, an irreversible two-tissue compartment model was selected for voxel-wise pharmacokinetic analysis. Of the extracted parameters, k₁ (~perfusion) showed a strong correlation with early tracer uptake (mean spearman R = 0.88) 5 min post injection (pi). Moreover, positive relationships were found between late tracer uptake (90 min pi) and both k₃ and the net influx rate constant, Ki (mean spearman R = 0.56 and R = 0.86; respectively).CONCLUSION: This study shows the feasibility to extract relevant parameters from voxel-wise pharmacokinetic analysis to be used for preclinical validation of 64Cu-ATSM as a hypoxia-specific PET tracer.
U2 - 10.3390/diagnostics5020096
DO - 10.3390/diagnostics5020096
M3 - Journal article
C2 - 26854145
VL - 5
SP - 96
EP - 112
JO - Diagnostics
JF - Diagnostics
SN - 2075-4418
IS - 2
ER -