TY - JOUR
T1 - Postnatal Administration of Lactobacillus rhamnosus HN001 Ameliorates Perinatal Broad-Spectrum Antibiotic-Induced Reduction in Myelopoiesis and T Cell Activation in Mouse Pups
AU - Fuglsang, Eva
AU - Krych, Lukasz
AU - Lundsager, Mia Thorup
AU - Nielsen, Dennis Sandris
AU - Frøkiær, Hanne
PY - 2018/11
Y1 - 2018/11
N2 - Scope: This study addresses whether administration of Lactobacillus rhamnosus HN001 could mitigate the effects of a compromised gut microbiota on the composition of mature leukocytes and granulocyte-macrophage progenitor cells (GMPs) in newborn mice. Methods and results: Pregnant dams receive oral broad-spectrum antibiotics, which dramatically decrease the gut microbial composition analyzed by 16S rRNA sequencing. Perinatal antibiotic treatment decreases the proportions of bone marrow (BM) GMPs (postnatal day (PND2): 0.5% vs 0.8%, PND4: 0.2% to 0.6%) and mature granulocytes (33% vs 24% at PND2), and spleen granulocytes (7% vs 17% at PND2) and B cells (PND2:18% vs 28%, PND4:11% vs 22%). At PND35, T helper (Th) cells (20% vs 14%) and cytotoxic T (Tc) cells (10% vs 8%) decrease in the spleen. Oral administration of L. rhamnosus HN001 to neonatal pups (PND1-7) restores the antibiotic-induced changes of GMPs and granulocytes in BM and spleen, and further increases splenic granulocytes in control pups. At PND35, splenic proportions of B and Th but not Tc cells are restored. Conclusion: Postnatal administration of a single bacterial strain efficiently restores granulopoiesis and most T cell activation in neonatal mice that suffer from a perinatal antibiotic-induced compromised gut microbiota at birth.
AB - Scope: This study addresses whether administration of Lactobacillus rhamnosus HN001 could mitigate the effects of a compromised gut microbiota on the composition of mature leukocytes and granulocyte-macrophage progenitor cells (GMPs) in newborn mice. Methods and results: Pregnant dams receive oral broad-spectrum antibiotics, which dramatically decrease the gut microbial composition analyzed by 16S rRNA sequencing. Perinatal antibiotic treatment decreases the proportions of bone marrow (BM) GMPs (postnatal day (PND2): 0.5% vs 0.8%, PND4: 0.2% to 0.6%) and mature granulocytes (33% vs 24% at PND2), and spleen granulocytes (7% vs 17% at PND2) and B cells (PND2:18% vs 28%, PND4:11% vs 22%). At PND35, T helper (Th) cells (20% vs 14%) and cytotoxic T (Tc) cells (10% vs 8%) decrease in the spleen. Oral administration of L. rhamnosus HN001 to neonatal pups (PND1-7) restores the antibiotic-induced changes of GMPs and granulocytes in BM and spleen, and further increases splenic granulocytes in control pups. At PND35, splenic proportions of B and Th but not Tc cells are restored. Conclusion: Postnatal administration of a single bacterial strain efficiently restores granulopoiesis and most T cell activation in neonatal mice that suffer from a perinatal antibiotic-induced compromised gut microbiota at birth.
KW - antibiotics
KW - granulopoiesis
KW - gut microbiota
KW - Lactobacillus rhamnosus
KW - T cells
U2 - 10.1002/mnfr.201800510
DO - 10.1002/mnfr.201800510
M3 - Journal article
C2 - 30211987
AN - SCOPUS:85054475828
VL - 62
SP - 1
EP - 12
JO - Molecular Nutrition & Food Research
JF - Molecular Nutrition & Food Research
SN - 1613-4125
IS - 22
M1 - 1800510
ER -