TY - JOUR
T1 - Protection against experimental necrotizing enterocolitis by fecal filtrate transfer requires an active donor virome
AU - Spiegelhauer, Malene Roed
AU - Offersen, Simone Margaard
AU - Mao, Xiaotian
AU - Gambino, Michela
AU - Nielsen, Dennis Sandris
AU - Nguyen, Duc Ninh
AU - Brunse, Anders
N1 - Publisher Copyright:
© 2025 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2025
Y1 - 2025
N2 - Necrotizing enterocolitis (NEC) remains a frequent catastrophic disease in preterm infants, and fecal filtrate transfer (FFT) has emerged as a promising prophylactic therapy. This study explored the role of virome viability for the protective effect of FFT. Using ultraviolet (UV) irradiation, we established a viral inactivation protocol and administered FFT, UV-inactivated FFT (iFFT) or sterile saline orally to preterm piglets at risk for experimental NEC. The gut pathology and barrier properties were assessed, while the microbiome was explored by 16S rRNA amplicon and metavirome sequencing. Like in prior studies, FFT reduced NEC severity and intestinal inflammation, while these effects were absent in the iFFT group. Unexpectedly, piglets receiving FFT exhibited mild side effects in the form of early-onset diarrhea. The FFT also converged the gut colonization by increased viral heterogeneity and a reduced abundance of pathobionts like Clostridium perfringens and Escherichia. In contrast, the gut microbiome of iFFT recipients diverged from both FFT and the controls. These findings highlight the clear distinction between the ability of active and inactivate viromes to modulate gut microbiota and decrease pathology. The efficacy of FFT may be driven by active bacteriophages, and loss of virome activity could have consequences for the treatment efficacy.
AB - Necrotizing enterocolitis (NEC) remains a frequent catastrophic disease in preterm infants, and fecal filtrate transfer (FFT) has emerged as a promising prophylactic therapy. This study explored the role of virome viability for the protective effect of FFT. Using ultraviolet (UV) irradiation, we established a viral inactivation protocol and administered FFT, UV-inactivated FFT (iFFT) or sterile saline orally to preterm piglets at risk for experimental NEC. The gut pathology and barrier properties were assessed, while the microbiome was explored by 16S rRNA amplicon and metavirome sequencing. Like in prior studies, FFT reduced NEC severity and intestinal inflammation, while these effects were absent in the iFFT group. Unexpectedly, piglets receiving FFT exhibited mild side effects in the form of early-onset diarrhea. The FFT also converged the gut colonization by increased viral heterogeneity and a reduced abundance of pathobionts like Clostridium perfringens and Escherichia. In contrast, the gut microbiome of iFFT recipients diverged from both FFT and the controls. These findings highlight the clear distinction between the ability of active and inactivate viromes to modulate gut microbiota and decrease pathology. The efficacy of FFT may be driven by active bacteriophages, and loss of virome activity could have consequences for the treatment efficacy.
KW - Bacteriophages
KW - Fecal filtrate transfer
KW - Inflammation
KW - necrotizing enterocolitis
KW - ultraviolet irradiation
U2 - 10.1080/19490976.2025.2486517
DO - 10.1080/19490976.2025.2486517
M3 - Journal article
C2 - 40207909
AN - SCOPUS:105002400932
SN - 1949-0976
VL - 17
JO - Gut Microbes
JF - Gut Microbes
IS - 1
M1 - 2486517
ER -