Abstract
Soil contains almost twice as much carbon (C) as the atmosphere and 5-15% of soil C is stored in a form of particulate organic matter (POM). Particulate organic matter C is regarded as one of the most labile components of the soil C, such that can be easily lost under right environmental settings. Conceptually, micro-environmental conditions are understood to be responsible for protection of soil C. However, quantitative knowledge of the specific mechanisms driving micro-environmental effects is still lacking. Here we combined CO 2 respiration measurements of intact soil samples with X-ray computed micro-tomography imaging and investigated how micro-environmental conditions, represented by soil pores, influence decomposition of POM. We found that atmosphere-connected soil pores influenced soil Câ (tm) s, and especially POM's, decomposition. In presence of such pores losses in POM were 3-15 times higher than in their absence. Moreover, we demonstrated the presence of a feed-forward relationship between soil C decomposition and pore connections that enhance it. Since soil hydrology and soil pores are likely to be affected by future climate changes, our findings indicate that not-accounting for the influence of soil pores can add another sizable source of uncertainty to estimates of future soil C losses.
| Originalsprog | Engelsk |
|---|---|
| Artikelnummer | 16261 |
| Tidsskrift | Scientific Reports |
| Vol/bind | 5 |
| ISSN | 2045-2322 |
| DOI | |
| Status | Udgivet - 2015 |
| Udgivet eksternt | Ja |
Bibliografisk note
Funding Information:Support for this research was provided in parts by the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) award No. 2011-68002-301907 cropping systems Coordinated Agricultural Project (CAP); by the U.S. National Science Foundation Long-Term Ecological Research (LTER) Program at the Kellogg Biological Station (DEB 1027253); by Kellogg Biological Station; by Michigan State University’s “Project GREEEN” Program; and by Michigan State University’s “Discretionary Fund Initiative” Program.