TY - JOUR
T1 - Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition
AU - Montanini, Roberto
AU - Quattrocchi, Antonino
AU - Piccolo, Sebastiano A.
AU - Amato, Alessandra
AU - Trocino, Stefano
AU - Zignani, Sabrina C.
AU - Lo Faro, Massimiliano
AU - Squadrito, Gaetano
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.
AB - Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.
UR - http://www.scopus.com/inward/record.url?scp=84987622571&partnerID=8YFLogxK
U2 - 10.1364/AO.55.007142
DO - 10.1364/AO.55.007142
M3 - Journal article
AN - SCOPUS:84987622571
SN - 1559-128X
VL - 55
SP - 7142
EP - 7148
JO - Applied Optics
JF - Applied Optics
IS - 25
ER -