Recombination Weight Based Selection in the DTS-CMA-ES

Oswin Krause*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

1 Citationer (Scopus)

Abstract

Surrogate model based Evolution Strategies (like the doubly trained surrogate model CMA-ES, DTS-CMA-ES) use a model of the objective function to reduce the number of function evaluations during optimization. This work investigates to use the expected selection weights averaged over the GP posterior distribution as replacement of the fitness and to guide point-selection for evaluation via the variance of the weights. Results obtained on BBOB show that the proposed technique performs on par with current strategies and allows the usage of surrogate models that are invariant to strictly increasing transformations of the function values. However, initial experiments showed that simple modeling of ranks in the GP does lead to worse results than current GP models of the function values.

OriginalsprogEngelsk
TitelParallel Problem Solving from Nature : PPSN XVII - 17th International Conference, PPSN 2022, Proceedings, Part II
RedaktørerGünter Rudolph, Anna V. Kononova, Hernán Aguirre, Pascal Kerschke, Gabriela Ochoa, Tea Tušar
Antal sider14
ForlagSpringer
Publikationsdato2022
Sider295-308
ISBN (Trykt)978-3-031-14720-3
ISBN (Elektronisk)978-3-031-14721-0
DOI
StatusUdgivet - 2022
Begivenhed17th International Conference on Parallel Problem Solving from Nature, PPSN 2022 - Dortmund, Tyskland
Varighed: 10 sep. 202214 sep. 2022

Konference

Konference17th International Conference on Parallel Problem Solving from Nature, PPSN 2022
Land/OmrådeTyskland
ByDortmund
Periode10/09/202214/09/2022
NavnLecture Notes in Computer Science
Vol/bind13399 LNCS
ISSN0302-9743

Bibliografisk note

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Citationsformater