Rigidity Aspects of Penrose’s Singularity Theorem

Gregory Galloway*, Eric Ling

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

In this paper, we study rigidity aspects of Penrose’s singularity theorem. Specifically, we aim to answer the following question: if a spacetime satisfies the hypotheses of Penrose’s singularity theorem except with weakly trapped surfaces instead of trapped surfaces, then what can be said about the global spacetime structure if the spacetime is null geodesically complete? In this setting, we show that we obtain a foliation of MOTS which generate totally geodesic null hypersurfaces. Depending on our starting assumptions, we obtain either local or global rigidity results. We apply our arguments to cosmological spacetimes (i.e., spacetimes with compact Cauchy surfaces) and scenarios involving topological censorship.

OriginalsprogEngelsk
Artikelnummer25
TidsskriftCommunications in Mathematical Physics
Vol/bind406
Udgave nummer2
Antal sider15
ISSN0010-3616
DOI
StatusUdgivet - 2025

Bibliografisk note

Publisher Copyright:
© The Author(s) 2024.

Citationsformater