TY - JOUR
T1 - Robust and efficient 19F heteronuclear dipolar decoupling using refocused continuous-wave rf irradiation
AU - Vinther, Joachim M
AU - Khaneja, Navin
AU - Nielsen, Niels Chr
N1 - Copyright © 2012 Elsevier Inc. All rights reserved.
PY - 2013/1
Y1 - 2013/1
N2 - Refocused continuous wave (rCW) decoupling is presented as an efficient and robust means to obtain well-resolved magic-angle-spinning solid-state NMR spectra of low-γ spins, such as (13)C dipolar coupled to fluorine. The rCW decoupling sequences, recently introduced for (1)H decoupling, are very robust towards large isotropic and anisotropic shift ranges as often encountered for (19)F spins. In rCW decoupling, the so-called refocusing pulses inserted into the CW irradiation eliminate critical residual second- and third-order dipolar coupling and dipolar-coupling against chemical shielding anisotropy cross-terms in the effective Hamiltonian through time-reversal (i.e. refocusing). As important additional assets, the rCW decoupling sequences are robust towards variations in rf amplitudes, operational at low to high spinning speeds, and easy to set-up for optimal performance experimentally. These aspects are demonstrated analytically/numerically and experimentally in comparison to state-of-the-art decoupling sequences such as TPPM, SPINAL-64, and frequency-swept variants of these.
AB - Refocused continuous wave (rCW) decoupling is presented as an efficient and robust means to obtain well-resolved magic-angle-spinning solid-state NMR spectra of low-γ spins, such as (13)C dipolar coupled to fluorine. The rCW decoupling sequences, recently introduced for (1)H decoupling, are very robust towards large isotropic and anisotropic shift ranges as often encountered for (19)F spins. In rCW decoupling, the so-called refocusing pulses inserted into the CW irradiation eliminate critical residual second- and third-order dipolar coupling and dipolar-coupling against chemical shielding anisotropy cross-terms in the effective Hamiltonian through time-reversal (i.e. refocusing). As important additional assets, the rCW decoupling sequences are robust towards variations in rf amplitudes, operational at low to high spinning speeds, and easy to set-up for optimal performance experimentally. These aspects are demonstrated analytically/numerically and experimentally in comparison to state-of-the-art decoupling sequences such as TPPM, SPINAL-64, and frequency-swept variants of these.
U2 - 10.1016/j.jmr.2012.11.003
DO - 10.1016/j.jmr.2012.11.003
M3 - Journal article
C2 - 23220184
VL - 226
SP - 88
EP - 92
JO - Journal of Magnetic Resonance
JF - Journal of Magnetic Resonance
SN - 1090-7807
ER -