Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota

Albert Palleja, Alireza Kashani, Kristine Højgaard Allin, Trine Nielsen, Chenchen Zhang, Yin Li, Thorsten Brach, Suisha Liang, Qiang Feng, Nils Bruun Jørgensen, Kirstine N. Bojsen-Møller, Carsten Dirksen, Kristoffer Sølvsten Burgdorf, Jens Juul Holst, Sten Madsbad, Jun Wang, Oluf Borbye Pedersen, Torben Hansen, Manimozhiyan Arumugam

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

233 Citationer (Scopus)
464 Downloads (Pure)

Abstract

Background: Roux-en-Y gastric bypass (RYGB) is an effective means to achieve sustained weight loss for morbidly obese individuals. Besides rapid weight reduction, patients achieve major improvements of insulin sensitivity and glucose homeostasis. Dysbiosis of gut microbiota has been associated with obesity and some of its co-morbidities, like type 2 diabetes, and major changes of gut microbial communities have been hypothesized to mediate part of the beneficial metabolic effects observed after RYGB. Here we describe changes in gut microbial taxonomic composition and functional potential following RYGB. Methods: We recruited 13 morbidly obese patients who underwent RYGB, carefully phenotyped them, and had their gut microbiomes quantified before (n = 13) and 3 months (n = 12) and 12 months (n = 8) after RYGB. Following shotgun metagenomic sequencing of the fecal microbial DNA purified from stools, we characterized the gut microbial composition at species and gene levels followed by functional annotation. Results: In parallel with the weight loss and metabolic improvements, gut microbial diversity increased within the first 3 months after RYGB and remained high 1 year later. RYGB led to altered relative abundances of 31 species (P < 0.05, q < 0.15) within the first 3 months, including those of Escherichia coli, Klebsiella pneumoniae, Veillonella spp., Streptococcus spp., Alistipes spp., and Akkermansia muciniphila. Sixteen of these species maintained their altered relative abundances during the following 9 months. Interestingly, Faecalibacterium prausnitzii was the only species that decreased in relative abundance. Fifty-three microbial functional modules increased their relative abundance between baseline and 3 months (P < 0.05, q < 0.17). These functional changes included increased potential (i) to assimilate multiple energy sources using transporters and phosphotransferase systems, (ii) to use aerobic respiration, (iii) to shift from protein degradation to putrefaction, and (iv) to use amino acids and fatty acids as energy sources. Conclusions: Within 3 months after morbidly obese individuals had undergone RYGB, their gut microbiota featured an increased diversity, an altered composition, an increased potential for oxygen tolerance, and an increased potential for microbial utilization of macro- and micro-nutrients. These changes were maintained for the first year post-RYGB.
OriginalsprogEngelsk
Artikelnummer67
TidsskriftGenome Medicine
Vol/bind8
Antal sider13
ISSN1756-994X
DOI
StatusUdgivet - 2016

Citationsformater