Scalable synthesis of Cu-cluster catalysts via spark ablation for the electrochemical conversion of CO2 to acetaldehyde

Cedric David Koolen*, Jack Kirk Pedersen, Bernardus Zijlstra, Maximilian Winzely, Jie Zhang, Tobias V. Pfeiffer, Wilbert Vrijburg, Mo Li, Ayush Agarwal, Zohreh Akbari, Yasemen Kuddusi, Juan Herranz, Olga V. Safonova, Andreas Schmidt-Ott, Wen Luo, Andreas Zuettel

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

The electrochemical conversion of CO2 into acetaldehyde offers a sustainable and green alternative to the Wacker process. However, current electrocatalysts cannot effectively compete with heterogeneous processes owing to their limited selectivity towards acetaldehyde, resulting in low energy efficiencies. Here we report a theory-guided synthesis of a series of Cu-cluster catalysts (~1.6 nm) immobilized on various heteroatom-doped carbonaceous supports, produced via spark ablation of Cu electrodes (2.6 μg h−1 production rate, 6 Wh energy consumption). These catalysts achieve acetaldehyde selectivity of up to 92% at only 600 mV from the equilibrium potential. In addition, the catalysts exhibit exceptional catalytic stability during a rigorous 30 h stress test involving three repeated start–stop cycles. In situ X-ray absorption spectroscopy reveals that the initial oxide clusters were completely reduced under cathodic potential and maintained their metallic nature even after exposure to air, explaining the stable performance of the catalyst. First-principles simulations further elucidate a possible mechanism of CO2 conversion to acetaldehyde. (Figure presented.)

OriginalsprogEngelsk
Artikelnummer1118
TidsskriftNature Synthesis
DOI
StatusE-pub ahead of print - 2025

Bibliografisk note

Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2025.

Citationsformater