Seasonal-Trend Time Series Decomposition on Graphics Processing Units

Dmitry Serykh*, Stefan Oehmcke, Cosmin Oancea, Dainius Masiliunas, Jan Verbesselt, Yan Cheng, Stephanie Horion, Fabian Gieseke, Nikolaj Hinnerskov

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

Abstract

In many domains, large amounts of time series data are being collected and analyzed in a semi-automatic manner. A prominent approach is the seasonal and trend decomposition using locally estimated scatterplot smoothing (STL) technique, which has been applied extensively in the past. However, STL quickly becomes computationally very expensive when applied to large data sets. In this work, we propose the first parallel implementation for the STL decomposition approach, which is tailored to the specific needs of graphics processing units (GPU). Our experimental evaluation on two global-scale case studies in temperature and vegetation trend analysis exhibits at least three-to-four orders of magnitude speed-up, demonstrating the effectiveness of the overall approach and the immense potential of the implementation in spatio-temporal data analyses. The source code is publicly available at https://github.com/diku-dk/hastl. An artifact that allows the experimental results to be reproduced is available at https://sid.erda.dk/sharelink/hOUrqJJ FfA.

OriginalsprogEngelsk
TitelProceedings - 2023 IEEE International Conference on Big Data, BigData 2023
RedaktørerJingrui He, Themis Palpanas, Xiaohua Hu, Alfredo Cuzzocrea, Dejing Dou, Dominik Slezak, Wei Wang, Aleksandra Gruca, Jerry Chun-Wei Lin, Rakesh Agrawal
Antal sider10
ForlagIEEE
Publikationsdato2023
Sider5914-5923
ISBN (Elektronisk)9798350324457
DOI
StatusUdgivet - 2023
Begivenhed2023 IEEE International Conference on Big Data, BigData 2023 - Sorrento, Italien
Varighed: 15 dec. 202318 dec. 2023

Konference

Konference2023 IEEE International Conference on Big Data, BigData 2023
Land/OmrådeItalien
BySorrento
Periode15/12/202318/12/2023
SponsorAnkura, IEEE Dataport

Bibliografisk note

Publisher Copyright:
© 2023 IEEE.

Citationsformater