TY - JOUR
T1 - Short-chain oxygenated VOCs
T2 - emission and uptake by plants and atmospheric sources, sinks, and concentrations
AU - Seco, Roger
AU - Peñuelas, Josep
AU - Filella, Iolanda
PY - 2007
Y1 - 2007
N2 - Emissions of volatile organic compounds (VOCs) have multiple atmospheric implications and play many roles in plant physiology and ecology. Among these VOCs, growing interest is being devoted to a group of short-chain oxygenated VOCs (oxVOCs). Technology improvements such as proton transfer reaction-mass spectrometry are facilitating the study of these hydrocarbons and new data regarding these compounds is continuously appearing. Here we review current knowledge of the emissions of these oxVOCs by plants and the factors that control them, and also provide an overview of sources, sinks, and concentrations found in the atmosphere. The oxVOCs reviewed here are formic and acetic acids, acetone, formaldehyde, acetaldehyde, methanol, and ethanol. In general, because of their water solubility (low gas-liquid partitioning coefficient), the plant-atmosphere exchange is stomatal-dependent, although it can also take place via the cuticle. This exchange is also determined by atmospheric mixing ratios. These compounds have relatively long atmospheric half-lives and reach considerable concentrations in the atmosphere in the range of ppbv. Likewise, under non-stressed conditions plants can emit all of these oxVOCs together at fluxes ranging from 0.2 up to 4.8 μg(C)g-1(leaf dry weight)h-1 and at rates that increase several-fold when under stress. Gaps in our knowledge regarding the processes involved in the synthesis, emission, uptake, and atmospheric reactivity of oxVOCs precludes the clarification of exactly what is conditioning plant-atmosphere exchange-and also when, how, and why this occurs-and these lacunae therefore warrant further research in this field.
AB - Emissions of volatile organic compounds (VOCs) have multiple atmospheric implications and play many roles in plant physiology and ecology. Among these VOCs, growing interest is being devoted to a group of short-chain oxygenated VOCs (oxVOCs). Technology improvements such as proton transfer reaction-mass spectrometry are facilitating the study of these hydrocarbons and new data regarding these compounds is continuously appearing. Here we review current knowledge of the emissions of these oxVOCs by plants and the factors that control them, and also provide an overview of sources, sinks, and concentrations found in the atmosphere. The oxVOCs reviewed here are formic and acetic acids, acetone, formaldehyde, acetaldehyde, methanol, and ethanol. In general, because of their water solubility (low gas-liquid partitioning coefficient), the plant-atmosphere exchange is stomatal-dependent, although it can also take place via the cuticle. This exchange is also determined by atmospheric mixing ratios. These compounds have relatively long atmospheric half-lives and reach considerable concentrations in the atmosphere in the range of ppbv. Likewise, under non-stressed conditions plants can emit all of these oxVOCs together at fluxes ranging from 0.2 up to 4.8 μg(C)g-1(leaf dry weight)h-1 and at rates that increase several-fold when under stress. Gaps in our knowledge regarding the processes involved in the synthesis, emission, uptake, and atmospheric reactivity of oxVOCs precludes the clarification of exactly what is conditioning plant-atmosphere exchange-and also when, how, and why this occurs-and these lacunae therefore warrant further research in this field.
KW - Acetaldehyde
KW - Acetic acid
KW - Acetone
KW - Biogenic
KW - Emission
KW - Ethanol
KW - Formaldehyde
KW - Formic acid
KW - Methanol
KW - oxVOCs
U2 - 10.1016/j.atmosenv.2006.11.029
DO - 10.1016/j.atmosenv.2006.11.029
M3 - Review
AN - SCOPUS:33947327406
VL - 41
SP - 2477
EP - 2499
JO - Atmospheric Environment
JF - Atmospheric Environment
SN - 1352-2310
IS - 12
ER -