Singular continuous Cantor spectrum for magnetic quantum walks

C. Cedzich*, J. Fillman, T. Geib, A. H. Werner

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

15 Citationer (Scopus)
27 Downloads (Pure)

Abstract

In this note, we consider a physical system given by a two-dimensional quantum walk in an external magnetic field. In this setup, we show that both the topological structure and its type depend sensitively on the value of the magnetic flux Φ : While for Φ / (2 π) rational the spectrum is known to consist of bands, we show that for Φ / (2 π) irrational, the spectrum is a zero-measure Cantor set and the spectral measures have no pure point part.

OriginalsprogEngelsk
TidsskriftLetters in Mathematical Physics
Vol/bind110
Sider (fra-til)1141–1158
ISSN0377-9017
DOI
StatusUdgivet - 2020

Citationsformater