Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type

Adam John Rose, Bruno Bisiani, Bodil Vistisen, Bente Kiens, Erik A. Richter

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    58 Citationer (Scopus)

    Abstract

    Protein synthesis in skeletal muscle is known to decrease during exercise and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) phosphorylation, key components in the mRNA translation machinery, were examined together with AMP activated protein kinase (AMPK) in healthy young men. Skeletal muscle eEF2 phosphorylation at Thr(56) increased during exercise but was not influenced by exercise intensity, and was lower than rest 30min after exercise. On the other hand, 4EBP1 phosphorylation at Thr(37/46) decreased during exercise and this decrease was greater at higher exercise intensities, and was similar to rest 30min after exercise. AMPK activity, as indexed by AMPK alpha-subunit phosphorylation at Thr(172) and phosphorylation of the AMPK substrate ACCbeta at Ser(221), was higher with higher exercise intensities, and these indices were higher than rest after high intensity exercise only. Using immunohistochemistry, it was shown that the increase in skeletal muscle eEF2 Thr(56) phosphorylation was restricted to type I myofibers. Taken together, these data suggest that the depression of skeletal muscle protein synthesis with endurance-type exercise may be regulated at both initiation (i.e. 4EBP1) and elongation (i.e. eEF2) steps, with eEF2 phosphorylation contributing at all exercise intensities but 4EBP1 dephosphorylation contributing to a greater extent at high versus low exercise intensities. Key words: exercise, skeletal muscle, signaling.
    OriginalsprogEngelsk
    TidsskriftAmerican Journal of Physiology: Regulatory, Integrative and Comparative Physiology
    Vol/bind296
    Udgave nummer2
    Sider (fra-til)R326-R333
    Antal sider8
    ISSN0363-6119
    DOI
    StatusUdgivet - 2009

    Bibliografisk note

    CURIS 2009 5200 005

    Citationsformater