Sleep deprivation leads to non-adaptive alterations in sleep microarchitecture and amyloid-β accumulation in a murine Alzheimer model

Neža Cankar, Natalie Beschorner, Anastasia Tsopanidou, Filippa L. Qvist, Ana R. Colaço, Mie Andersen, Celia Kjaerby, Christine Delle, Marius Lambert, Filip Mundt, Pia Weikop, Mathias Jucker, Matthias Mann, Niels Henning Skotte, Maiken Nedergaard*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Citationer (Scopus)
4 Downloads (Pure)

Abstract

Impaired sleep is a common aspect of aging and often precedes the onset of Alzheimer's disease. Here, we compare the effects of sleep deprivation in young wild-type mice and their APP/PS1 littermates, a murine model of Alzheimer's disease. After 7 h of sleep deprivation, both genotypes exhibit an increase in EEG slow-wave activity. However, only the wild-type mice demonstrate an increase in the power of infraslow norepinephrine oscillations, which are characteristic of healthy non-rapid eye movement sleep. Notably, the APP/PS1 mice fail to enhance norepinephrine oscillations 24 h after sleep deprivation, coinciding with an accumulation of cerebral amyloid-β protein. Proteome analysis of cerebrospinal fluid and extracellular fluid further supports these findings by showing altered protein clearance in APP/PS1 mice. We propose that the suppression of infraslow norepinephrine oscillations following sleep deprivation contributes to increased vulnerability to sleep loss and heightens the risk of developing amyloid pathology in early stages of Alzheimer's disease.

OriginalsprogEngelsk
Artikelnummer114977
TidsskriftCell Reports
Vol/bind43
Udgave nummer11
Antal sider24
ISSN2639-1856
DOI
StatusUdgivet - 2024

Bibliografisk note

Publisher Copyright:
© 2024 The Author(s)

Citationsformater