Sparse Regression via Range Counting

Jean Cardinal, Aurèlien Ooms

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

25 Downloads (Pure)

Abstract

The sparse regression problem, also known as best subset selection problem, can be cast as follows: Given a set S of n points in ℝ^d, a point y∈ ℝ^d, and an integer 2 ≤ k ≤ d, find an affine combination of at most k points of S that is nearest to y. We describe a O(n^{k-1} log^{d-k+2} n)-time randomized (1+ε)-approximation algorithm for this problem with d and ε constant. This is the first algorithm for this problem running in time o(n^k). Its running time is similar to the query time of a data structure recently proposed by Har-Peled, Indyk, and Mahabadi (ICALP'18), while not requiring any preprocessing. Up to polylogarithmic factors, it matches a conditional lower bound relying on a conjecture about affine degeneracy testing. In the special case where k = d = O(1), we provide a simple O_δ(n^{d-1+δ})-time deterministic exact algorithm, for any δ > 0. Finally, we show how to adapt the approximation algorithm for the sparse linear regression and sparse convex regression problems with the same running time, up to polylogarithmic factors.
OriginalsprogEngelsk
Titel17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)
RedaktørerSusanne Albers
ForlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publikationsdato2020
Sider1-17
Artikelnummer20
ISBN (Elektronisk)978-3-95977-150-4
DOI
StatusUdgivet - 2020
Begivenhed17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020) - Torshavn, Færøerne
Varighed: 22 jun. 202024 jun. 2020

Konference

Konference17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)
Land/OmrådeFærøerne
ByTorshavn
Periode22/06/202024/06/2020
NavnLeibniz International Proceedings in Informatics, LIPIcs
Vol/bind162
ISSN1868-8969

Citationsformater