Stochastic Shape Analysis

Alexis Arnaudon, Darryl Holm, Stefan Sommer*

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportBidrag til bog/antologiForskningpeer review

Abstract

The chapter describes stochastic models of shapes from a Hamiltonian viewpoint, including Langevin models, Riemannian Brownian motions and stochastic variational systems. Starting from the deterministic setting of outer metrics on shape spaces and transformation groups, we discuss recent approaches to introducing noise in shape analysis from a physical or Hamiltonian point of view. We furthermore outline important applications and statistical uses of stochastic shape models, and we discuss perspectives and current research efforts in stochastic shape analysis.

OriginalsprogEngelsk
TitelHandbook of Mathematical Models and Algorithms in Computer Vision and Imaging : Mathematical Imaging and Vision
ForlagSpringer
Publikationsdato2023
Sider1325-1348
ISBN (Trykt)9783030986605
ISBN (Elektronisk)9783030986612
DOI
StatusUdgivet - 2023

Bibliografisk note

Publisher Copyright:
© Springer Nature Switzerland AG 2023.

Citationsformater