Abstract
Background: The literature paints a complex picture of the association between mortality risk and ICU strain. In this study, we sought to determine if there is an association between mortality risk in intensive care units (ICU) and occupancy of beds compatible with mechanical ventilation, as a proxy for strain. Methods: A national retrospective observational cohort study of 89 English hospital trusts (i.e. groups of hospitals functioning as single operational units). Seven thousand one hundred thirty-three adults admitted to an ICU in England between 2 April and 1 December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. A Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible), bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, deprivation index, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). Results: One hundred thirty-five thousand six hundred patient days were observed, with a mortality rate of 19.4 per 1000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (> 85% occupancy versus the baseline of 45 to 85%) [OR 1.23 (95% posterior credible interval (PCI): 1.08 to 1.39)]. In contrast, mortality was decreased for admissions during periods of low occupancy (< 45% relative to the baseline) [OR 0.83 (95% PCI 0.75 to 0.94)]. Conclusion: Increasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Further research is required to establish if this is a causal relationship or whether it reflects strain on other operational factors such as staff. If causal, the result highlights the importance of strategies to keep ICU occupancy low to mitigate the impact of this type of resource saturation.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 213 |
Tidsskrift | BMC Medicine |
Vol/bind | 19 |
Udgave nummer | 1 |
ISSN | 1741-7015 |
DOI | |
Status | Udgivet - 2021 |
Udgivet eksternt | Ja |
Bibliografisk note
Funding Information:HW is supported by the Feuer International Scholarship in Artificial Intelligence. TAM, IH, and SB acknowledge funding from the Medical Research Council (MRC) Centre for Global Infectious Disease Analysis (reference no. MR/R015600/1), jointly funded by the UK MRC and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. SB and SF were support by the MRC to undertake research on COVID-19 (MR/V038109/1). SB acknowledges funding from The Academy of Medical Sciences (SBF004/1080), Bill & Melinda Gates Foundation (CRR00280) and Imperial College Healthcare NHS Trust - BRC Funding (RDA02). JMD is supported by an Independent Fellowship funded by Research England?s Expanding Excellence in England (E3) fund. SJV and BAM are supported by The Alan Turing Institute (Engineering and Physical Sciences Research Council (EPSRC) grant EP/N510129/). SJV is also supported by the University of Warwick IAA (Impact Acceleration Account) funding. SF is supported by EPSRC (EP/V002910/1). AD is supported by Wave 1 of the UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1.
Funding Information:
HW is supported by the Feuer International Scholarship in Artificial Intelligence. TAM, IH, and SB acknowledge funding from the Medical Research Council (MRC) Centre for Global Infectious Disease Analysis (reference no. MR/R015600/1), jointly funded by the UK MRC and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. SB and SF were support by the MRC to undertake research on COVID-19 (MR/V038109/1). SB acknowledges funding from The Academy of Medical Sciences (SBF004/1080), Bill & Melinda Gates Foundation (CRR00280) and Imperial College Healthcare NHS Trust - BRC Funding (RDA02). JMD is supported by an Independent Fellowship funded by Research England’s Expanding Excellence in England (E3) fund. SJV and BAM are supported by The Alan Turing Institute (Engineering and Physical Sciences Research Council (EPSRC) grant EP/N510129/). SJV is also supported by the University of Warwick IAA (Impact Acceleration Account) funding. SF is supported by EPSRC (EP/V002910/1). AD is supported by Wave 1 of the UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1.
Funding Information:
SJV declares funding from IQVIA and Microsoft. BAM is an employee of the Wellcome Trust and holds a Wellcome funded honorary post at University College London for the purposes of carrying out independent research; the views expressed in this manuscript do not necessarily reflect the views or position of the Wellcome Trust. All other authors declare no competing interests.
Publisher Copyright:
© 2021, The Author(s).