TY - JOUR
T1 - The effects of surfactants on the performance of polymer-based microwave-induced in situ amorphization
AU - Qiang, Wei
AU - Löbmann, Korbinian
AU - McCoy, Colin P.
AU - Andrews, Gavin P.
AU - Zhao, Min
N1 - Funding Information:
The project was supported by Queen's University Belfast/Chinese Scholarship Council (CSC) scholarship (CSC NO. 201806370231).
Publisher Copyright:
© 2022
PY - 2023
Y1 - 2023
N2 - Microwave-induced in situ amorphization is a novel technology for preparing amorphous solid dispersions (ASDs) to address the challenges of their long-term physical stability and downstream processing. To date, only few types of dielectric materials have been reported for microwave-induced in situ amorphization, which restricted the extensive research of this technology. This study aimed to investigate the feasibility and mechanisms of utilizing the non-ionic surfactants, i.e. Kollisolv P124, Kolliphor RH40, D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), Tween (T) 60 (T60), T65, T80 and T85, as plasticizers to facilitate microwave-induced in situ amorphization. It was found that the successful application of surfactants could be related with their low Tm, low Mw and high HLB. Kolliphor RH40 was selected as a typical surfactant due to its excellent dielectric heating ability, plasticizing effect and solubilizing effect when facilitating amorphization. Then, the dissolution-mediated in situ amorphization mechanism was investigated and intuitively demonstrated. For the most promising formulation, i.e. microwaved systems with Korlliphor RH40 at 1.5 (w/w) plasticizer/polymer ratio, a complete and fast in vitro dissolution was observed relative to the untreated systems. In conclusion, non-ionic surfactants had the potential to facilitate microwave-induced in situ amorphization, which provided a new direction in the formulation designation for microwave-able systems.
AB - Microwave-induced in situ amorphization is a novel technology for preparing amorphous solid dispersions (ASDs) to address the challenges of their long-term physical stability and downstream processing. To date, only few types of dielectric materials have been reported for microwave-induced in situ amorphization, which restricted the extensive research of this technology. This study aimed to investigate the feasibility and mechanisms of utilizing the non-ionic surfactants, i.e. Kollisolv P124, Kolliphor RH40, D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), Tween (T) 60 (T60), T65, T80 and T85, as plasticizers to facilitate microwave-induced in situ amorphization. It was found that the successful application of surfactants could be related with their low Tm, low Mw and high HLB. Kolliphor RH40 was selected as a typical surfactant due to its excellent dielectric heating ability, plasticizing effect and solubilizing effect when facilitating amorphization. Then, the dissolution-mediated in situ amorphization mechanism was investigated and intuitively demonstrated. For the most promising formulation, i.e. microwaved systems with Korlliphor RH40 at 1.5 (w/w) plasticizer/polymer ratio, a complete and fast in vitro dissolution was observed relative to the untreated systems. In conclusion, non-ionic surfactants had the potential to facilitate microwave-induced in situ amorphization, which provided a new direction in the formulation designation for microwave-able systems.
KW - Amorphous solid dispersion
KW - In situ amorphization
KW - Microwave
KW - Plasticizer
KW - Surfactant
U2 - 10.1016/j.ijpharm.2022.122426
DO - 10.1016/j.ijpharm.2022.122426
M3 - Journal article
C2 - 36427697
AN - SCOPUS:85143540352
VL - 630
JO - International Journal of Pharmaceutics
JF - International Journal of Pharmaceutics
SN - 0378-5173
M1 - 122426
ER -