TY - JOUR
T1 - The Hypothermic Influence on CHOP and Ero1-α in an Endoplasmic Reticulum Stress Model of Cerebral Ischemia
AU - Poone, Gagandip K.
AU - Hasseldam, Henrik
AU - Munkholm, Nina
AU - Rasmussen, Rune S.
AU - Grønberg, Nina V.
AU - Johansen, Flemming Fryd
PY - 2015/5/15
Y1 - 2015/5/15
N2 - Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response,resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP) activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplas micreticulum oxidoreductin-α (Ero1-α), because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR) in rat hippocampi following global cerebral ischemia, and inhypoxic pheochromocytoma cells during normothermic (37 °C) and hypothermic (31 °C)conditions. As a result of ischemia, a significant increase in expression of CHOP andEro1-α was observed after three, six and twelve hours of reperfusion following globalischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001), whereas Ero1-α expression peaked at three to six hours (p < 0.0001). Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001). On the contrary, thegene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001). Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. Ashypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia) and treatment (hypothermia), we conclude that they are regulated independently.
AB - Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response,resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP) activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplas micreticulum oxidoreductin-α (Ero1-α), because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR) in rat hippocampi following global cerebral ischemia, and inhypoxic pheochromocytoma cells during normothermic (37 °C) and hypothermic (31 °C)conditions. As a result of ischemia, a significant increase in expression of CHOP andEro1-α was observed after three, six and twelve hours of reperfusion following globalischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001), whereas Ero1-α expression peaked at three to six hours (p < 0.0001). Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001). On the contrary, thegene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001). Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. Ashypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia) and treatment (hypothermia), we conclude that they are regulated independently.
KW - Faculty of Health and Medical Sciences
U2 - 10.3390/brainsci5020178
DO - 10.3390/brainsci5020178
M3 - Journal article
C2 - 25989620
VL - 5
SP - 178
EP - 187
JO - Brain Sciences
JF - Brain Sciences
SN - 2076-3425
ER -