TY - JOUR
T1 - The intestinal microbiome is a co-determinant of the postprandial plasma glucose response
AU - Søndertoft, Nadja Buus
AU - Vogt, Josef Korbinian
AU - Arumugam, Manimozhiyan
AU - Kristensen, Mette
AU - Gøbel, Rikke Juul
AU - Fan, Yong
AU - Lyu, Liwei
AU - Bahl, Martin I.
AU - Eriksen, Carsten
AU - Ängquist, Lars
AU - Frøkiær, Hanne
AU - Hansen, Tue Haldor
AU - Brix, Susanne
AU - Nielsen, H. Bjørn
AU - Hansen, Torben
AU - Vestergaard, Henrik
AU - Gupta, Ramneek
AU - Licht, Tine Rask
AU - Lauritzen, Lotte
AU - Pedersen, Oluf Borbye
N1 - CURIS 2020 NEXS 305
PY - 2020
Y1 - 2020
N2 - Elevated postprandial plasma glucose is a risk factor for development of type 2 diabetes and cardiovascular disease. We hypothesized that the inter-individual postprandial plasma glucose response varies partly depending on the intestinal microbiome composition and function. We analyzed data from Danish adults (n = 106), who were self-reported healthy and attended the baseline visit of two previously reported randomized controlled cross-over trials within the Gut, Grain and Greens project. Plasma glucose concentrations at five time points were measured before and during three hours after a standardized breakfast. Based on these data, we devised machine learning algorithms integrating bio-clinical, as well as shotgun-sequencing-derived taxa and functional potentials of the intestinal microbiome to predict individual postprandial glucose excursions. In this post hoc study, we found microbial and clinical features, which predicted up to 48% of the inter-individual variance of postprandial plasma glucose responses (Pearson correlation coefficient of measured vs. predicted values, R = 0.69, 95% CI: 0.45 to 0.84, p<0.001). The features were age, fasting serum triglycerides, systolic blood pressure, BMI, fasting total serum cholesterol, abundance of Bifidobacterium genus, richness of metagenomics species and abundance of a metagenomic species annotated to Clostridiales at order level. A model based only on microbial features predicted up to 14% of the variance in postprandial plasma glucose excursions (R = 0.37, 95% CI: 0.02 to 0.64, p = 0.04). Adding fasting glycaemic measures to the model including microbial and bio-clinical features increased the predictive power to R = 0.78 (95% CI: 0.59 to 0.89, p<0.001), explaining more than 60% of the inter-individual variance of postprandial plasma glucose concentrations. The outcome of the study points to a potential role of the taxa and functional potentials of the intestinal microbiome. If validated in larger studies our findings may be included in future algorithms attempting to develop personalized nutrition, especially for prediction of individual blood glucose excursions in dys-glycaemic individuals.
AB - Elevated postprandial plasma glucose is a risk factor for development of type 2 diabetes and cardiovascular disease. We hypothesized that the inter-individual postprandial plasma glucose response varies partly depending on the intestinal microbiome composition and function. We analyzed data from Danish adults (n = 106), who were self-reported healthy and attended the baseline visit of two previously reported randomized controlled cross-over trials within the Gut, Grain and Greens project. Plasma glucose concentrations at five time points were measured before and during three hours after a standardized breakfast. Based on these data, we devised machine learning algorithms integrating bio-clinical, as well as shotgun-sequencing-derived taxa and functional potentials of the intestinal microbiome to predict individual postprandial glucose excursions. In this post hoc study, we found microbial and clinical features, which predicted up to 48% of the inter-individual variance of postprandial plasma glucose responses (Pearson correlation coefficient of measured vs. predicted values, R = 0.69, 95% CI: 0.45 to 0.84, p<0.001). The features were age, fasting serum triglycerides, systolic blood pressure, BMI, fasting total serum cholesterol, abundance of Bifidobacterium genus, richness of metagenomics species and abundance of a metagenomic species annotated to Clostridiales at order level. A model based only on microbial features predicted up to 14% of the variance in postprandial plasma glucose excursions (R = 0.37, 95% CI: 0.02 to 0.64, p = 0.04). Adding fasting glycaemic measures to the model including microbial and bio-clinical features increased the predictive power to R = 0.78 (95% CI: 0.59 to 0.89, p<0.001), explaining more than 60% of the inter-individual variance of postprandial plasma glucose concentrations. The outcome of the study points to a potential role of the taxa and functional potentials of the intestinal microbiome. If validated in larger studies our findings may be included in future algorithms attempting to develop personalized nutrition, especially for prediction of individual blood glucose excursions in dys-glycaemic individuals.
U2 - 10.1371/journal.pone.0238648
DO - 10.1371/journal.pone.0238648
M3 - Journal article
C2 - 32947608
VL - 15
JO - PLoS ONE
JF - PLoS ONE
SN - 1932-6203
IS - 9
M1 - e0238648
ER -