The mosquito transmission of malaria: the effects of atovaquone-proguanil (Malarone) and chloroquine

S Enosse, G A Butcher, G Margos, J Mendoza, R E Sinden, B Høgh

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

26 Citationer (Scopus)

Abstract

Despite its recognized importance, the prevention of patients with malaria from continuing to infect mosquitoes after treatment is not always achieved in practice. An inevitable consequence of the prolonged life-span and relative metabolic stasis of the mature gametocytes of Plasmodium falciparum is that they are not cleared by most antimalarials, and few antimalarials block infection in the mosquito vector. Previous research on the constituents of Malarone, a new 'combined antimalarial', suggested that the active components, atovaquone and proguanil, might inhibit infectivity of gametocytes to mosquitoes. We contrast here the impact of atovaquone-proguanil and chloroquine on the transmission of P. falciparum and P. berghei. While chloroquine enhanced infectivity of P. falciparum, atovaquone-proguanil caused a significant reduction. Surprisingly, sporontocidal activity against the rodent parasite persisted long after the levels of the constituent drugs would have been expected to have fallen below effective plasma concentrations on the basis of the established pharmacokinetics of atovaquone and proguanil. The P. berghei model may thus have provided a sensitive bioassay, detecting drug(s) at levels below that normally found with the usual chemical assays.

OriginalsprogEngelsk
TidsskriftTransactions of the Royal Society of Tropical Medicine and Hygiene
Vol/bind94
Udgave nummer1
Sider (fra-til)77-82
Antal sider6
ISSN0035-9203
StatusUdgivet - 5 apr. 2000

Citationsformater