TY - JOUR
T1 - The role of water coordination in the pH-dependent gating of hAQP10
AU - Truelsen, Sigurd Friis
AU - Missel, Julie Winkel
AU - Gotfryd, Kamil
AU - Pedersen, Per Amstrup
AU - Gourdon, Pontus
AU - Lindorff-Larsen, Kresten
AU - Hélix-Nielsen, Claus
PY - 2022
Y1 - 2022
N2 - Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.Graph
AB - Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.Graph
KW - Aquaporin
KW - Channel gating
KW - hAQP10
KW - Molecular dynamics
KW - Water coordination
U2 - 10.1016/j.bbamem.2021.183809
DO - 10.1016/j.bbamem.2021.183809
M3 - Journal article
C2 - 34699768
VL - 1864
JO - B B A - Biomembranes
JF - B B A - Biomembranes
SN - 0005-2736
IS - 1
M1 - 183809
ER -