The Search for Primordial Molecular Cloud Matter: Unravelling Solar System Evolution Through an Isotope Study of Meteorites and Their Components

Publikation: Bog/antologi/afhandling/rapportPh.d.-afhandlingForskning

Abstract

Our Solar System today presents a somewhat static picture compared to the turbulent start of its existence. Meteorites are the left-over building blocks of planet formation and allow us to probe the chemical and physical processes that occurred during the first few million years of Solar System evolution. Some of the least altered, most primitive meteorites can give us clues to the original make-up of the interstellar molecular cloud from which the Sun and its surrounding planets formed, thus, permitting us to trace Solar System formation from its most early conditions. Using state-of-the-art magnesium and chromium isotope techniques, we can distinguish a class of metal-rich meteorites with primordial molecular cloud signatures that show these objects formed in accretion regions akin to comets. As comets are proposed to have delivered some of the prerequisites of life to Earth, for example prebiotic species such as amino acids, determining the formation pathways of this organic matter is of utmost importance to understanding the habitability of Earth as well as exoplanetary systems. Hence, further detailed analyses of organic matter in some of the meteorites with primordial signatures have been carried out to unravel these processes.

Citationsformater