The use of seemingly unrelated regression to predict the carcass composition of lambs

V.A.P. Cadavez, Arne Henningsen

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    33 Citationer (Scopus)

    Abstract

    The aim of this study was to develop and evaluate models for predicting the carcass composition of lambs. Forty male lambs were slaughtered and their carcasses were cooled for 24 hours. The subcutaneous fat thickness was measured between the 12th and 13th rib and breast bone tissue thickness was taken in the middle of the second sternebrae. Left side of carcasses was dissected and the proportions of lean meat (LMP), subcutaneous fat (SFP), intermuscular fat (IFP), kidney and knob channel fat (KCFP), and bone plus remainder (BP) were obtained. Models were fitted using the seemingly unrelated regression (SUR) estimator which is novel in this area, and compared to ordinary least squares (OLS) estimates. Models were validated using the PRESS statistic. Our results showed that SUR estimator performed better in predicting LMP and IFP than the OLS estimator. Although objective carcass classification systems could be improved by using the SUR estimator, it has never been used before for predicting carcass composition.
    OriginalsprogEngelsk
    TidsskriftMeat Science
    Vol/bind92
    Udgave nummer4
    Sider (fra-til)548–553
    Antal sider6
    ISSN0309-1740
    DOI
    StatusUdgivet - 2012

    Bibliografisk note

    Working Paper (Pre-print version of the manuscript): http://econpapers.repec.org/RePEc:foi:wpaper:2011_12

    Citationsformater