TY - JOUR
T1 - Triptolide is an inhibitor of RNA polymerase I and II-dependent transcription leading predominantly to down-regulation of short-lived mRNA
AU - Vispé, Stéphane
AU - DeVries, Luc
AU - Créancier, Laurent
AU - Besse, Jérome
AU - Bréand, Sophie
AU - Hobson, David J.
AU - Svejstrup, Jesper Q.
AU - Annereau, Jean Philippe
AU - Cussac, Didier
AU - Dumontet, Charles
AU - Guilbaud, Nicolas
AU - Barret, Jean Marc
AU - Bailly, Christian
PY - 2009/10
Y1 - 2009/10
N2 - Triptolide, a natural product extracted from the Chinese plant Tripterygium wilfordii, possesses antitumor properties. Despite numerous reports showing the proapoptotic capacity and the inhibition of NF-κB-mediated transcription by triptolide, the identity of its cellular target is still unknown. To clarify its mechanism of action, we further investigated the effect of triptolide on RNA synthesis in the human non-small cell lung cancer cell line A549. Triptolide inhibited both total RNA and mRNA de novo synthesis, with the primary action being on the latter pool. We used 44K human pan-genomic DNA microarrays and identified the genes primarily affected by a short treatment with triptolide. Among the modulated genes, up to 98% are down-regulated, encompassing a large array of oncogenes including transcription factors and cell cycle regulators. We next observed that triptolide induced a rapid depletion of RPB1, the RNA polymerase II main subunit that is considered a hallmark of a transcription elongation blockage. However, we also show that triptolide does not directly interact with the RNA polymerase II complex nor does it damage DNA. We thus conclude that triptolide is an original pharmacologic inhibitor of RNA polymerase activity, affecting indirectly the transcription machinery, leading to a rapid depletion of short-lived mRNA, including transcription factors, cell cycle regulators such as CDC25A, and the oncogenes MYC and Src. Overall, the data shed light on the effect of triptolide on transcription, along with its novel potential applications in cancers, including acute myeloid leukemia, which is in part driven by the aforementioned oncogenic factors.
AB - Triptolide, a natural product extracted from the Chinese plant Tripterygium wilfordii, possesses antitumor properties. Despite numerous reports showing the proapoptotic capacity and the inhibition of NF-κB-mediated transcription by triptolide, the identity of its cellular target is still unknown. To clarify its mechanism of action, we further investigated the effect of triptolide on RNA synthesis in the human non-small cell lung cancer cell line A549. Triptolide inhibited both total RNA and mRNA de novo synthesis, with the primary action being on the latter pool. We used 44K human pan-genomic DNA microarrays and identified the genes primarily affected by a short treatment with triptolide. Among the modulated genes, up to 98% are down-regulated, encompassing a large array of oncogenes including transcription factors and cell cycle regulators. We next observed that triptolide induced a rapid depletion of RPB1, the RNA polymerase II main subunit that is considered a hallmark of a transcription elongation blockage. However, we also show that triptolide does not directly interact with the RNA polymerase II complex nor does it damage DNA. We thus conclude that triptolide is an original pharmacologic inhibitor of RNA polymerase activity, affecting indirectly the transcription machinery, leading to a rapid depletion of short-lived mRNA, including transcription factors, cell cycle regulators such as CDC25A, and the oncogenes MYC and Src. Overall, the data shed light on the effect of triptolide on transcription, along with its novel potential applications in cancers, including acute myeloid leukemia, which is in part driven by the aforementioned oncogenic factors.
U2 - 10.1158/1535-7163.MCT-09-0549
DO - 10.1158/1535-7163.MCT-09-0549
M3 - Journal article
C2 - 19808979
AN - SCOPUS:70350241487
VL - 8
SP - 2780
EP - 2790
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
SN - 1535-7163
IS - 10
ER -