Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge for early diagnosis due to the lack of sensitive and specific biomarkers. This encouraged us to explore the diagnostic value of cancer-derived small extracellular vesicles (sEVs) as early detection biomarkers. We previously showed that the recombinant malaria protein VAR2CSA (rVAR2) selectively binds to oncofetal chondroitin sulfate (ofCS) on the surfaces of cancer cells, which might be useful for identifying cancer-derived sEVs. Indeed, flow cytometry revealed strong ofCS expression in PDAC cell-derived sEVs, as evidenced by the presence of mutant KRAS, a common genetic alteration in PDAC. Plasma from PDAC patients showed significantly higher ofCS+ sEV levels compared to healthy donors and patients with benign gastrointestinal diseases. ROC analysis for ofCS+ sEVs revealed an AUC of 0.9049 for the detection of all-stage and 0.9222 for early-stage PDAC. Notably, mutant KRAS was also detected in these patient-derived sEVs. Most intriguingly, combining ofCS+ sEVs and CA19-9 resulted in an AUC of 0.9707 for the detection of early PDAC. Our study demonstrates that rVAR2 is suitable for detecting ofCS+ cancer-derived sEVs in plasma, thereby providing high efficiency for identifying PDAC patients among a diverse population. These findings suggest that rVAR2-based sEV detection could serve as a powerful diagnostic tool to improve patient survival through early detection.
Originalsprog | Engelsk |
---|---|
Artikelnummer | e70067 |
Tidsskrift | Journal of Extracellular Vesicles |
Vol/bind | 14 |
Udgave nummer | 4 |
Antal sider | 14 |
ISSN | 2001-3078 |
DOI | |
Status | Udgivet - 2025 |