TY - JOUR
T1 - Using a mechanistic model to explain the rising non-linearity in storage discharge relationships as the extent of permafrost decreases in Arctic catchments
AU - Marion Hinzman, Alexa
AU - Sjöberg, Ylva
AU - Lyon, Steve
AU - Schaap, Peter
AU - van der Velde, Ype
N1 - CENPERM[2022]
Funding Information:
This work is part of the research program Netherlands Polar Programme with project number ALWPP.2016.014, which is financed by the Dutch Research Council (NWO).
Publisher Copyright:
© 2022
PY - 2022
Y1 - 2022
N2 - The relationship between groundwater and discharge in Arctic and sub-Arctic regions is strongly controlled by permafrost. Previous work has shown that catchments with thawing frozen soils due to the warming climate are expected to show changes in their storage-discharge relationship. In this study, we use a mechanistic modelling approach to demonstrate that a thawing catchment underlain with continuous permafrost undergoes a dramatic change in storage-discharge relationship. We demonstrate that the effect of permafrost thaw, conceptualized as a reduction of an impermeable layer in the subsurface, will likely only be clearly observable as a change in slope of the recession curve of catchments with hillslope gradients>5 %. For flat catchments (<1% hillslope gradient), we find no relation with permafrost extent and change in recession curve slope will likely be dominated by changes in active layer parameters, such as in shallow surface permeability (Hydraulic Conductivity, above permafrost) and shallow surface and subsurface water retention (Specific Yield of Groundwater & Specific Yield of Surface). For mildly sloped Arctic catchments (5 % hillslope gradient), change in recession curve slope is controlled both by changes in permafrost extent and the subsurface flow length and subsurface hydraulic properties for the shallow flow, with minimal impact from overland flow properties and changes in meteorological factors. For moderately sloped Arctic catchments (10 % hillslope gradient), change in recession curve slope change is dominated by changes in permafrost extent, and secondly by changes in the subsurface flow length and subsurface hydraulic properties, with no impact from meteorological factors or changes in overland flow properties. Several of the parameters found to be driving shifts in recession curve slopes in our modeling, such as changes in active layer thickness and the formation of taliks, are more likely than others to evolve with the ongoing Arctic climate change in hillslopes, helping us understand what drives the real-world increases in non-linearity of storage-discharge relationships.
AB - The relationship between groundwater and discharge in Arctic and sub-Arctic regions is strongly controlled by permafrost. Previous work has shown that catchments with thawing frozen soils due to the warming climate are expected to show changes in their storage-discharge relationship. In this study, we use a mechanistic modelling approach to demonstrate that a thawing catchment underlain with continuous permafrost undergoes a dramatic change in storage-discharge relationship. We demonstrate that the effect of permafrost thaw, conceptualized as a reduction of an impermeable layer in the subsurface, will likely only be clearly observable as a change in slope of the recession curve of catchments with hillslope gradients>5 %. For flat catchments (<1% hillslope gradient), we find no relation with permafrost extent and change in recession curve slope will likely be dominated by changes in active layer parameters, such as in shallow surface permeability (Hydraulic Conductivity, above permafrost) and shallow surface and subsurface water retention (Specific Yield of Groundwater & Specific Yield of Surface). For mildly sloped Arctic catchments (5 % hillslope gradient), change in recession curve slope is controlled both by changes in permafrost extent and the subsurface flow length and subsurface hydraulic properties for the shallow flow, with minimal impact from overland flow properties and changes in meteorological factors. For moderately sloped Arctic catchments (10 % hillslope gradient), change in recession curve slope change is dominated by changes in permafrost extent, and secondly by changes in the subsurface flow length and subsurface hydraulic properties, with no impact from meteorological factors or changes in overland flow properties. Several of the parameters found to be driving shifts in recession curve slopes in our modeling, such as changes in active layer thickness and the formation of taliks, are more likely than others to evolve with the ongoing Arctic climate change in hillslopes, helping us understand what drives the real-world increases in non-linearity of storage-discharge relationships.
KW - Arctic hydrology
KW - Permafrost
KW - Recession curve
KW - Storage-discharge
KW - Thaw
U2 - 10.1016/j.jhydrol.2022.128162
DO - 10.1016/j.jhydrol.2022.128162
M3 - Journal article
AN - SCOPUS:85134880260
VL - 612
JO - Journal of Hydrology
JF - Journal of Hydrology
SN - 0022-1694
IS - Part B
M1 - 128162
ER -