Weak Convergence to Derivatives of Fractional Brownian Motion

Søren Johansen, Morten Ørregaard Nielsen*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

28 Downloads (Pure)

Abstract

It is well known that, under suitable regularity conditions, the normalized fractional process with fractional parameter d converges weakly to fractional Brownian motion (fBm) for . We show that, for any nonnegative integer M, derivatives of order of the normalized fractional process with respect to the fractional parameter d jointly converge weakly to the corresponding derivatives of fBm. As an illustration, we apply the results to the asymptotic distribution of the score vectors in the multifractional vector autoregressive model.
OriginalsprogEngelsk
TidsskriftEconometric Theory
Vol/bind40
Sider (fra-til)859-874
Antal sider16
ISSN0266-4666
DOI
StatusUdgivet - 2024

Citationsformater