Abstract
This paper presents two distribution independent weighting schemes for k-Nearest-Neighbors (kNN). Applying the first scheme in a Leave-One-Out (LOO) setting corresponds to performing complete b-fold cross validation (b-CCV), while applying the second scheme corresponds to performing bootstrapping in the limit of infinite iterations. We demonstrate that the soft kNN errors obtained through b-CCV can be obtained by applying the weighted kNN in a LOO setting, and that the proposed weighting schemes can decrease the variance and improve the generalization of kNN in a CV setting.
Originalsprog | Engelsk |
---|---|
Titel | 2010 20th International Conference on Pattern Recognition (ICPR) |
Antal sider | 4 |
Forlag | IEEE |
Publikationsdato | 2010 |
Sider | 666-669 |
ISBN (Trykt) | 978-1-4244-7542-1 |
ISBN (Elektronisk) | 978-1-4244-7541-4 |
DOI | |
Status | Udgivet - 2010 |
Begivenhed | 20th International Conference on Pattern Recognition - Istanbul, Tyrkiet Varighed: 23 aug. 2010 → 26 aug. 2010 |
Konference
Konference | 20th International Conference on Pattern Recognition |
---|---|
Land/Område | Tyrkiet |
By | Istanbul |
Periode | 23/08/2010 → 26/08/2010 |