Wettability and hydrolytic stability of 3-aminopropylsilane coupling agent and phenol-urea-formaldehyde binder on silicate surfaces and fibers

D. Okhrimenko*, A. Budi, M. Ceccato, D. B. Johansson, D. Lybye, K. Bechgaard, S. L. S. Stipp

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

10 Citationer (Scopus)
10 Downloads (Pure)

Abstract

The stability of phenol-urea-formaldehyde (PUF) binder and 3-aminopropylsilane (APS) on composite silicate materials (fibers and wafers) was studied with surface sensitive techniques (X-ray photoelectron spectroscopy (XPS) and streaming potential) through a wide range of humidity and temperature and ab initio modelling complemented the results. Behavior was compared for wettability properties, determined by vapor adsorption and contact angle analysis. APS and PUF, deposited on the silicate surfaces, decrease surface energy and wettability but water adsorption remains high, facilitating hydrolytic decomposition of the composite material. Deposited APS is unstable at T>50 degrees C and 75% RH, while PUF is less sensitive to high humidity and temperature. Molecular dynamics confirmed APS sensitivity to humidity. Water adsorption and surface energy decrease, and material stability increases when a hydrophobization agent is applied to APS/PUF treated surfaces. The direct correlation between wettability and stability of PUF/APS/fiber composites can contribute in designing new materials with controlled hydrophobic properties. (C) 2020 Elsevier Ltd. All rights reserved.

OriginalsprogEngelsk
Artikelnummer109431
TidsskriftPolymer Degradation and Stability
Vol/bind183
Antal sider13
ISSN0141-3910
DOI
StatusUdgivet - jan. 2021

Citationsformater