Abstract
The gray matter of the spinal cord is the seat of somata of various types of neurons devoted to the sensory and motor activities of the limbs and trunk as well as a part of the autonomic nervous system. The volume of the spinal gray matter is an indicator of the local neuronal processing, and this can decrease due to atrophy associated with degenerative diseases and injury. Nevertheless, the absolute volume of the human spinal cord has rarely been reported, if ever. Here, we use high-resolution magnetic resonance imaging, with a cross-sectional resolution of 50 × 50 μm and a voxel size of 0.0005 mm3 to estimate the total gray and white matter volume of a post mortem human female spinal cord. Segregation of gray and white matter was accomplished using deep learning image segmentation. Furthermore, we include data from a male spinal cord of a previously published study. The gray and white matter volumes were found to be 2.87 and 11.33 mL, respectively, for the female and 3.55 and 19.33 mL, respectively, for the male. The gray and white matter profiles along the vertebral axis were found to be strikingly similar, and the volumes of the cervical, thoracic, and lumbosacral sections were almost equal.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Neurophysiology |
Vol/bind | 124 |
Udgave nummer | 6 |
Sider (fra-til) | 1792-1797 |
Antal sider | 6 |
ISSN | 0022-3077 |
DOI | |
Status | Udgivet - 11 dec. 2020 |