A complete Bernstein function related to the fractal dimension of Pascal's pyramid modulo a prime

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Let fr(x)=log(1+rx)/log(1+x) for x>0. We prove that fr is a complete Bernstein function for 0≤r≤1 and a Stieltjes function for 1≤r. This answers a conjecture of David Bradley that fr is a Bernstein function when 0≤r≤1.

Original languageEnglish
Article number125601
JournalExpositiones Mathematicae
ISSN0723-0869
DOIs
Publication statusE-pub ahead of print - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s)

Keywords

  • Bernstein function
  • Complete Bernstein function
  • Pick function
  • Stieltjes function

Cite this