A complete characterization of infinitely repeated two-player games having computable strategies with no computable best response under limit-of-means payoff

Jakub Dargaj, Jakob Grue Simonsen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

23 Downloads (Pure)

Abstract

It is well-known that for infinitely repeated games, there are computable strategies that have best responses, but no computable best responses. These results were originally proved for either specific games (e.g., Prisoner's dilemma), or for classes of games satisfying certain conditions not known to be both necessary and sufficient. We derive a complete characterization in the form of simple necessary and sufficient conditions for the existence of a computable strategy without a computable best response under limit-of-means payoff. We further refine the characterization by requiring the strategy profiles to be Nash equilibria or subgame-perfect equilibria, and we show how the characterizations entail that it is efficiently decidable whether an infinitely repeated game has a computable strategy without a computable best response.

Original languageEnglish
Article number105713
JournalJournal of Economic Theory
Volume213
Number of pages24
ISSN0022-0531
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Inc.

Keywords

  • Best response strategies
  • Computability
  • Limit-of-means payoff
  • Repeated games
  • Subgame-perfect equilibria

Cite this