Abstract
Background and Objectives: Prediction of haemolytic disease of the foetus and newborn (HDFN) caused by maternal anti-A/-B enables timely therapy, thereby preventing the development of kernicterus spectrum disorder. However, previous efforts to establish accurate prediction methods have been only modestly successful. Materials and Methods: In a case–control study, we examined 76 samples from mothers and 76 samples from their newborns; 38 with and 38 without haemolysis. The IgG subclass profile of maternal anti-A and anti-B was determined by flow cytometry. Samples from newborns were genetically analysed for the A2 subgroup, secretor and FcγRIIa receptor alleles. Results: Surprisingly, we found a correlation between the newborn secretor allele and haemolysis (p = 0.034). No correlation was found for FcγRIIa alleles. The A2 subgroup was found only in newborns without haemolysis. Unexpectedly, different reaction patterns were found for maternal anti-A and anti-B; consequently, the results were treated separately. For the prediction of haemolysis in A-newborns, the maternal IgG1 subclass determination resulted in an accuracy of 83% at birth. For B-newborns, an accuracy of 91% was achieved by the maternal IgG2 subclass determination. Conclusion: We improved the prediction of ABO-HDFN by characterizing maternal anti-A and anti-B by flow cytometry and we presented genetic traits in newborns with correlation to haemolysis. We propose a new understanding of A- and B-substances as immunogens that enhance the maternal immune response and protect the newborn, and we suggest that the development of ABO-HDFN is different when caused by maternal anti-A compared to maternal anti-B.
Original language | English |
---|---|
Journal | Vox Sanguinis |
Volume | 117 |
Issue number | 3 |
Pages (from-to) | 415-423 |
ISSN | 0042-9007 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- blood groups
- genotyping
- haemolytic disease of the foetus and newborn
- RBC antigens and antibodies
- serological testing