Abstract
We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
Original language | English |
---|---|
Article number | 6 |
Journal | EPJ Quantum Technology |
Volume | 7 |
Issue number | 1 |
Number of pages | 27 |
DOIs | |
Publication status | Published - 4 Mar 2020 |
Keywords
- EVOLUTION
- SENSORS
- CLOCKS
- MODELS
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
AEDGE : Atomic Experiment for Dark Matter and Gravity Exploration in Space. / El-Neaj, Yousef Abou; Alpigiani, Cristiano; Amairi-Pyka, Sana; Araujo, Henrique; Balaz, Antun; Belic, Aleksandar; Bentine, Elliot; Bernabeu, Jose; Bingham, Robert; Bolpasi, Vasiliki; Bowden, William; Buchmueller, Oliver; Burrage, Clare; Calmet, Xavier; Canuel, Benjamin; Charmandaris, Vassilis; Chen, Xuzong; Coleman, Jonathon; Cotter, Joseph; Cui, Yanou; Derevianko, Andrei; De Roeck, Albert; Drougkakis, Ioannis; Dutan, Ioana; Elertas, Gedminas; Ellis, John; El Sawy, Mai; Fassi, Farida; Felea, Daniel; Feng, Chen-Hao; Flack, Robert; Foot, Chris; Fuentes, Ivette; Gaaloul, Naceur; Gauguet, Alexandre; Geiger, Remi; Gibson, Valerie; Giudice, Gian; Goldwin, Jon; Grachov, Oleg; Graham, Peter W.; Grasso, Dario; Van der Grinten, Maurits; Guendogan, Mustafa; Haehnelt, Martin G.; Harte, Tiffany; Hees, Aurelien; Hobson, Richard; Hogan, Jason; Holst, Bodil; Holynski, Michael; Kasevich, Mark; Kavanagh, Bradley J.; Von Klitzing, Wolf; Kovachy, Tim; Krikler, Benjamin; Krutzik, Markus; Lewicki, Marek; Lien, Yu-Hung; Liu, Miaoyuan; Luciano, Giuseppe Gaetano; Pandey, Saurabh; Paternostro, Mauro; Penning, Bjoern; Peters, Achim; Prevedelli, Marco; Puthiya-Veettil, Vishnupriya; Quenby, John; Rasel, Ernst; Roura, Albert; Sabulsky, Dylan; Sameed, Muhammed; Sauer, Ben; Schaffer, Stefan Alaric; Schiller, Stephan; Schkolnik, Vladimir; Schlippert, Dennis; Schubert, Christian; Sfar, Haifa Rejeb; Shayeghi, Armin; Soares-Santos, Marcelle; Vasilakis, Georgios; Vaskonen, Ville; Vogt, Christian; Webber-Date, Alex; Windpassinger, Patrick; Woltmann, Marian; Yazgan, Efe; Zupan, Jure.
In: EPJ Quantum Technology, Vol. 7, No. 1, 6, 04.03.2020.Research output: Contribution to journal › Journal article › Research › peer-review
}
TY - JOUR
T1 - AEDGE
T2 - Atomic Experiment for Dark Matter and Gravity Exploration in Space
AU - El-Neaj, Yousef Abou
AU - Alpigiani, Cristiano
AU - Amairi-Pyka, Sana
AU - Araujo, Henrique
AU - Balaz, Antun
AU - Belic, Aleksandar
AU - Bentine, Elliot
AU - Bernabeu, Jose
AU - Bingham, Robert
AU - Bolpasi, Vasiliki
AU - Bowden, William
AU - Buchmueller, Oliver
AU - Burrage, Clare
AU - Calmet, Xavier
AU - Canuel, Benjamin
AU - Charmandaris, Vassilis
AU - Chen, Xuzong
AU - Coleman, Jonathon
AU - Cotter, Joseph
AU - Cui, Yanou
AU - Derevianko, Andrei
AU - De Roeck, Albert
AU - Drougkakis, Ioannis
AU - Dutan, Ioana
AU - Elertas, Gedminas
AU - Ellis, John
AU - El Sawy, Mai
AU - Fassi, Farida
AU - Felea, Daniel
AU - Feng, Chen-Hao
AU - Flack, Robert
AU - Foot, Chris
AU - Fuentes, Ivette
AU - Gaaloul, Naceur
AU - Gauguet, Alexandre
AU - Geiger, Remi
AU - Gibson, Valerie
AU - Giudice, Gian
AU - Goldwin, Jon
AU - Grachov, Oleg
AU - Graham, Peter W.
AU - Grasso, Dario
AU - Van der Grinten, Maurits
AU - Guendogan, Mustafa
AU - Haehnelt, Martin G.
AU - Harte, Tiffany
AU - Hees, Aurelien
AU - Hobson, Richard
AU - Hogan, Jason
AU - Holst, Bodil
AU - Holynski, Michael
AU - Kasevich, Mark
AU - Kavanagh, Bradley J.
AU - Von Klitzing, Wolf
AU - Kovachy, Tim
AU - Krikler, Benjamin
AU - Krutzik, Markus
AU - Lewicki, Marek
AU - Lien, Yu-Hung
AU - Liu, Miaoyuan
AU - Luciano, Giuseppe Gaetano
AU - Pandey, Saurabh
AU - Paternostro, Mauro
AU - Penning, Bjoern
AU - Peters, Achim
AU - Prevedelli, Marco
AU - Puthiya-Veettil, Vishnupriya
AU - Quenby, John
AU - Rasel, Ernst
AU - Roura, Albert
AU - Sabulsky, Dylan
AU - Sameed, Muhammed
AU - Sauer, Ben
AU - Schaffer, Stefan Alaric
AU - Schiller, Stephan
AU - Schkolnik, Vladimir
AU - Schlippert, Dennis
AU - Schubert, Christian
AU - Sfar, Haifa Rejeb
AU - Shayeghi, Armin
AU - Soares-Santos, Marcelle
AU - Vasilakis, Georgios
AU - Vaskonen, Ville
AU - Vogt, Christian
AU - Webber-Date, Alex
AU - Windpassinger, Patrick
AU - Woltmann, Marian
AU - Yazgan, Efe
AU - Zupan, Jure
PY - 2020/3/4
Y1 - 2020/3/4
N2 - We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
AB - We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
KW - EVOLUTION
KW - SENSORS
KW - CLOCKS
KW - MODELS
U2 - 10.1140/epjqt/s40507-020-0080-0
DO - 10.1140/epjqt/s40507-020-0080-0
M3 - Journal article
VL - 7
JO - EPJ Quantum Technology
JF - EPJ Quantum Technology
SN - 2196-0763
IS - 1
M1 - 6
ER -