Abstract
Information retrieval (IR) relies on a general notion of relevance, which is used as the principal foundation for ranking and evaluation methods. However, IR does not account for more a nuanced affective experience. Here, we consider the emotional response decoded directly from the human brain as an alternative dimension of relevance. We report an experiment covering seven different scenarios in which we measure and predict how users emotionally respond to visual image contents by using functional near-infrared spectroscopy (fNIRS) neuroimaging on two commonly used affective dimensions: valence (negativity and positivity) and arousal (bored-ness and excitedness). Our results show that affective states can be successfully decoded using fNIRS, and utilized to complement the present notion of relevance in IR studies. For example, we achieved 0.39 Balanced accuracy and 0.61 AUC in 4-class classification of affective states (vs. 0.25 Balanced accuracy and 0.5 AUC of a random classifier). Likewise, we achieved 0.684 Precision@20 when retrieving high-arousal images. Our work opens new avenues for incorporating emotional states in IR evaluation, affective feedback, and information filtering.
Original language | English |
---|---|
Title of host publication | SIGIR 2023 - Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval |
Publisher | Association for Computing Machinery, Inc. |
Publication date | 2023 |
Pages | 1796-1800 |
ISBN (Electronic) | 9781450394086 |
DOIs | |
Publication status | Published - 2023 |
Event | 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023 - Taipei, Taiwan, Province of China Duration: 23 Jul 2023 → 27 Jul 2023 |
Conference
Conference | 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023 |
---|---|
Country/Territory | Taiwan, Province of China |
City | Taipei |
Period | 23/07/2023 → 27/07/2023 |
Sponsor | ACM SIGIR |
Bibliographical note
Publisher Copyright:© 2023 Copyright held by the owner/author(s).
Keywords
- Affective computing
- Affective feedback
- Emotion detection