TY - JOUR
T1 - ALMA Reveals a Stable Rotating Gas Disk in a Paradoxical Low-mass, Ultradusty Galaxy at z = 4.274
AU - Pope, Alexandra
AU - McKinney, Jed
AU - Kamieneski, Patrick
AU - Battisti, Andrew
AU - Aretxaga, Itziar
AU - Brammer, Gabriel
AU - Diego, Jose M.
AU - Hughes, David H.
AU - Keller, Erica
AU - Marchesini, Danilo
AU - Mizener, Andrew
AU - Montaña, Alfredo
AU - Murphy, Eric
AU - Whitaker, Katherine E.
AU - Wilson, Grant
AU - Yun, Min
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/7/1
Y1 - 2023/7/1
N2 - We report ALMA detections of [C ii] and a dust continuum in Az9, a multiply imaged galaxy behind the Frontier Field cluster MACS J0717.5+3745. The bright [C ii] emission line provides a spectroscopic redshift of z = 4.274. This strongly lensed (μ = 7 ± 1) galaxy has an intrinsic stellar mass of only 2 × 109 M ⊙ and a total star formation rate of 26 M ⊙ yr−1 (∼80% of which is dust-obscured). Using public magnification maps, we reconstruct the [C ii] emission in the source plane to reveal a stable, rotation-dominated disk with V/σ = 5.3, which is >2× higher than predicted from simulations for similarly high-redshift, low-mass galaxies. In the source plane, the [C ii] disk has a half-light radius of 1.8 kpc and, along with the dust, is spatially offset from the peak of the stellar light by 1.4 kpc. Az9 is not deficient in [C ii]; L [C II]/L IR = 0.0027, consistent with local and high-redshift normal star-forming galaxies. While dust-obscured star formation is expected to dominate in higher-mass galaxies, such a large reservoir of dust and gas in a lower-mass disk galaxy 1.4 Gyr after the Big Bang challenges our picture of early galaxy evolution. Furthermore, the prevalence of such low-mass dusty galaxies has important implications for the selection of the highest-redshift dropout galaxies with JWST. As one of the lowest stellar mass galaxies at z > 4 to be detected in a dust continuum and [C ii], Az9 is an excellent laboratory in which to study early dust enrichment in the interstellar medium.
AB - We report ALMA detections of [C ii] and a dust continuum in Az9, a multiply imaged galaxy behind the Frontier Field cluster MACS J0717.5+3745. The bright [C ii] emission line provides a spectroscopic redshift of z = 4.274. This strongly lensed (μ = 7 ± 1) galaxy has an intrinsic stellar mass of only 2 × 109 M ⊙ and a total star formation rate of 26 M ⊙ yr−1 (∼80% of which is dust-obscured). Using public magnification maps, we reconstruct the [C ii] emission in the source plane to reveal a stable, rotation-dominated disk with V/σ = 5.3, which is >2× higher than predicted from simulations for similarly high-redshift, low-mass galaxies. In the source plane, the [C ii] disk has a half-light radius of 1.8 kpc and, along with the dust, is spatially offset from the peak of the stellar light by 1.4 kpc. Az9 is not deficient in [C ii]; L [C II]/L IR = 0.0027, consistent with local and high-redshift normal star-forming galaxies. While dust-obscured star formation is expected to dominate in higher-mass galaxies, such a large reservoir of dust and gas in a lower-mass disk galaxy 1.4 Gyr after the Big Bang challenges our picture of early galaxy evolution. Furthermore, the prevalence of such low-mass dusty galaxies has important implications for the selection of the highest-redshift dropout galaxies with JWST. As one of the lowest stellar mass galaxies at z > 4 to be detected in a dust continuum and [C ii], Az9 is an excellent laboratory in which to study early dust enrichment in the interstellar medium.
U2 - 10.3847/2041-8213/acdf5a
DO - 10.3847/2041-8213/acdf5a
M3 - Letter
AN - SCOPUS:85165373265
VL - 951
JO - The Astrophysical Journal Letters
JF - The Astrophysical Journal Letters
SN - 2041-8205
IS - 2
M1 - L46
ER -