Arithmetic statistics of modular symbols

Yiannis N. Petridis, Morten S. Risager

Research output: Contribution to journalJournal articleResearchpeer-review

16 Citations (Scopus)
198 Downloads (Pure)

Abstract

Mazur, Rubin, and Stein have recently formulated a series of conjectures
about statistical properties of modular symbols in order to understand
central values of twists of elliptic curve L-functions. Two of these conjectures
relate to the asymptotic growth of the first and second moments of the modular
symbols. We prove these on average by using analytic properties of Eisenstein
series twisted by modular symbols. Another of their conjectures predicts the
Gaussian distribution of normalized modular symbols ordered according to
the size of the denominator of the cusps. We prove this conjecture in a refined
version that also allows restrictions on the location of the cusps.
Original languageEnglish
JournalInventiones Mathematicae
Volume212
Issue number3
Pages (from-to)997-1053
ISSN0020-9910
DOIs
Publication statusPublished - Jun 2018

Cite this