Assessing the utility of deep neural networks in detecting superficial surgical site infections from free text electronic health record data

Alexander Bonde, Stephan Lorenzen, Gustav Brixen, Anders Troelsen, Martin Sillesen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

2 Citations (Scopus)
7 Downloads (Pure)

Abstract

Background: High-quality outcomes data is crucial for continued surgical quality improvement. Outcomes are generally captured through structured administrative data or through manual curation of unstructured electronic health record (EHR) data. The aim of this study was to apply natural language processing (NLP) to chart notes in the EHR to accurately capture postoperative superficial surgical site infections (SSSIs). Methods: Deep Learning (DL) NLP models were trained on data from 389,865 surgical cases across all 11 hospitals in the Capital Region of Denmark. Surgical cases in the training dataset were performed between January 01st, 2017, and October 30th, 2021. We trained a forward reading and a backward reading universal language model on unlabeled postoperative chart notes recorded within 30 days of a surgical procedure. The two language models were subsequently finetuned on labeled data for the classification of SSSIs. Validation and testing were performed on surgical cases performed during the month of November 2021. We propose two different use cases: a stand-alone machine learning (SAM) pipeline and a human-in-the-loop (HITL) pipeline. Performances of both pipelines were compared to administrative data and to manual curation. Results: The models were trained on 3,983,864 unlabeled chart notes and finetuned on 1,231,656 labeled notes. Models had a test area under the receiver operating characteristic curves (ROC AUC) of 0.989 on individual chart notes and 0.980 on an aggregated case level. The SAM pipeline had a sensitivity of 0.604, a specificity of 0.996, a positive predictive value (PPV) of 0.763, and a negative predictive value (NPV) of 0.991. Prior to human review, the HITL pipeline had a sensitivity of 0.854, a specificity of 0.987, a PPV of 0.603, and a NPV of 0.997. Conclusion: The performance of the SAM pipeline was superior to administrative data, and significantly outperformed previously published results. The performance of the HITL pipeline approached that of manual curation.

Original languageEnglish
Article number1249835
JournalFrontiers in Digital Health
Volume5
Number of pages9
DOIs
Publication statusPublished - 2024

Bibliographical note

Publisher Copyright:
2024 Bonde, Lorenzen, Brixen, Troelsen and Sillesen.

Keywords

  • artificial neural network (ANN)
  • natural language processing
  • postoperative complication
  • surgery
  • surgical site infection

Cite this